If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17^2+9^2=q^2
We move all terms to the left:
17^2+9^2-(q^2)=0
We add all the numbers together, and all the variables
-1q^2+370=0
a = -1; b = 0; c = +370;
Δ = b2-4ac
Δ = 02-4·(-1)·370
Δ = 1480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1480}=\sqrt{4*370}=\sqrt{4}*\sqrt{370}=2\sqrt{370}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{370}}{2*-1}=\frac{0-2\sqrt{370}}{-2} =-\frac{2\sqrt{370}}{-2} =-\frac{\sqrt{370}}{-1} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{370}}{2*-1}=\frac{0+2\sqrt{370}}{-2} =\frac{2\sqrt{370}}{-2} =\frac{\sqrt{370}}{-1} $
| n2+1=10 | | -c/2=0.97 | | 2x/3+10=4x/5 | | -2=x+5/7 | | 51+90+w=180 | | 18r=-21r2 | | 3×+1-5×=4x-11 | | -6|y+3|=-42 | | 83+10x=90 | | 1.6s=1.92 | | Y=2+3x/5 | | 5=27-b | | X+5y=8y+20 | | -(5a+14)=3(5a-13) | | 3(4-4k)=4(-5-k) | | |-10+8a|+3=-15 | | -0.5y=-73 | | 5s+1=11 | | 53-y=179 | | 6x-12-2x=-2-6x+50 | | (50.9+x)/7=8.5 | | (5c+35)+1/2(c+92=180 | | -12c+13=-11 | | 2(3p+4)–2/3p=1/3(9+p) | | 3.50x=7.50=25.00 | | 9x²-8x+5=0 | | x/2-27=-25 | | 4=-2-z/2 | | x/6+1/3=x/18-1/9 | | q-1.7=-2.5 | | r/2+-3.3=-0.30 | | (18.8+x)/6=4.3 |